BSMN -SJ-B122 Спецификация

Информация по технике безопасности

ВАЖНО!!!

Невидимое лазерное излучение, испускаемое данным оборудованием, может быть опасным для глаз и кожи. В целях безопасности обязательно подсоедините оптические шнуры перед подачей питания на оборудование.

1 Общие сведения

1.1 Общее

Подводное быстрое соединение (далее сокращенно SQJ) в основном используется в нерелейных системах связи, которые могут обеспечить быстрое соединение между подводными кабелями с большой пропускной способностью и высокой надежностью. Его характеристики следующие:

SQJ использует высоконадежную конструкцию уплотнения термоусадочной трубки, которая может выдерживать давление 1000 метров на глубине моря. Благодаря небольшому размеру и легкому весу SQJ легко транспортировать и устанавливать. Что еще более важно, SQJ может быть проложен с помощью существующих подводных кабелеукладчиков.

1.2 Справочный стандарт

SQJ спроектирован, изготовлен и испытан в соответствии со следующими стандартами:

standard	Standardname
IEC 1073-1: 1994	Splices for optical fibers and cables - Part 1: Generic specification - hardware and accessories

1.3 Срок службы

Соединение, поставляемое в соответствии с настоящей спецификацией, может продолжать работать не менее 25 лет при нормальных условиях использования, не влияя на его характеристики.

1.4 Применимо Условия

Наименование	Параметры
Рабочая Температура	-20 °C ∼ +50 °C
Температура хранения и транспортировки	-40 °C ∼ +65 °C

2 механических Состав

- SQJ, который в основном состоит из следующих частей:
- (1) Корпус под давлением и его соединительные компоненты: эта часть в основном состоит из корпуса под давлением, бронированных узлов и буферов.
- (2)Внутренний блок: блок в основном состоит из лотка для управления волокном, торцевой крышки, цилиндра и термоусадочной трубки.

2.1 Корпус, работающий под давлением, и соединительные компоненты

На рисунке 2-1 показана механическая конструкция корпуса высокого давления и его соединительных компонентов, которая в основном состоит из следующих частей:

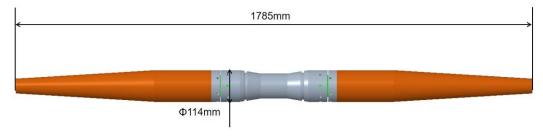


Рисунок 2-1 Корпус высокого давления BSMN-SJ-B122 SQJ и его соединительные компоненты

- (1) Корпус под давлением: длина около 250 мм и диаметр 90 мм, что обеспечивает полную защиту от давления, вибрации и коррозии.
- (2) Бронированные сборки: основная функция фиксация бронепровода подводного кабеля и передача растягивающего усилия подводного кабеля на герметичный корпус.
- (3) Буферы: смягчают удары под водой и предотвращают чрезмерный изгиб кабеля.

2.2 Внутренний блок

Внутренний блок в основном состоит из следующих частей, на рисунке 2-2 показаны его детали :

Рисунок 2-2 Схематическое изображение внутреннего блока (1) Лоток для управления оптоволокном: используется для сварки и развертывания волокон.

- (2) Торцевая крышка и цилиндр: обеспечивают защиту и поддержку.
- (3) Термоусадочные трубки: обеспечивают SQJ от проникновения воды из морской воды.

3 Интегрированный процесс

3.1 Подготовка концов кабеля

Требуются специальные инструменты и оборудование для профессиональной обработки конца подводного кабеля.

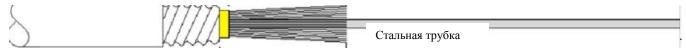


Рисунок 3-1 Принципиальная схема Подготовка конца кабеля

3.2 Запрессовка гнезда

Требуется специальное армированное обжимное оборудование для обжатия внутренних и внешних компонентов, а также стальной проволоки для достижения определенной деформации и получения соответствующей механической прочности.

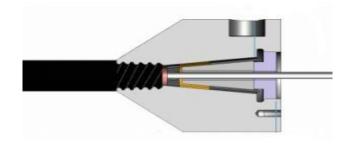


Рисунок 3-2 Принципиальная схема прессования муфты

3.3 Сращивание волокон

Следуйте стандартному процессу сращивания волокон. После завершения сварки сверните и уложите оптические волокна с обеих сторон, а затем поочередно вставьте оптоволоконные гильзы в держатель.

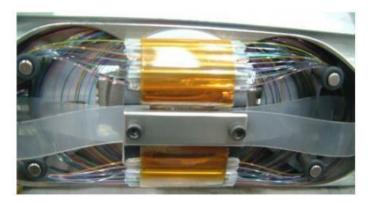


Рис. 3-3 Принципиальная схема сращивания волокон.

3.4 Термоусадка

Высоконадежная термоусадка по индивидуальному заказу используется для термоусадки полиэтиленового слоя оптического кабеля и разъема для достижения эффекта герметизации.

Рисунок 3-4 Принципиальная схема термоусадки

3.5 Бронированные компоненты

Бронированные компоненты SQJ обжимаются под фиксированным давлением, что позволяет армированной стальной проволоке достичь достаточного эффекта деформации, чтобы обеспечить общую прочность на растяжение соединительной коробки.

Рисунок 3-5 Принципиальная схема заделки брони. Прессование.

4 Комплексное управление процессом

4.1 Контроль потерь в точках сращивания

Выполнить стыковое соединение двух участков кабеля методом сварки волокон и обеспечить значение затухания при температуре плавления. Эффективность достигается главным образом за счет следующих двух достаточных и необходимых условий:

- (1) Разрез на торцевой поверхности волокна гладкий и чистый, без заусенцев, каждую пару волокон можно сваривать до четырех раз;
 - (2) Потери в волокне составляют менее 0,2 дБ;

4.2 Механическая прочность

Механическая прочность соединения обеспечивается процессом армирования сжатием. Броня сжатия строго основана на расчетном и проверенном значении давления в процессе сжатия брони. После завершения армирования сжатия гайка не будет двигаться, чтобы обеспечить общую прочность соединения на растяжение.

4.3 Водонепроницаемая защита

Этот продукт имеет специальную конструкцию и сочетает температуру в пределах технологического диапазона для нагрева термоусадочной втулки и обертывания внутреннего цилиндра сжатия с образованием герметичного корпуса. Подводное быстроразъемное соединение прошло несколько пороговых испытаний и может работать непрерывно и стабильно при максимальной глубине применения 1000 метров.

5. технические параметры

Технические параметры соединения SQJ показаны в следующей таблице.

Предметы	Параметр
Масса	Примерно 60 кг.

Общая длина	1785 мм
Наружный диаметр	Ф114 мм
Рабочая Температура	-20 ~ +50 °C
Максимальная емкость волокна	48
Потери при сращивании волокна	≤ 0,2 дБ
Минимальный радиус изгиба	0,75 м
Срок эксплуатации	25 лет